MVC and the RequestDispatcher-Exercise:  Page 6

MVC and the Request Dispatcher-Exercise:  Page 7

Programming in Java 6 with Swing and Servlets Part 1

Exercises: MVC and the RequestDispatcher
In this exercise you will develop a Web application that performs simple calculation.

· The application with require these files:
· calculatorUI.html which will contain the user input form for the application.

· result.jsp which will display the result of the calculation.

· CalculatorBean.java which is the Java bean used by result.jsp to obtain the calculated result.

· CalculatorServlet.java which will initialize CalculatorBean and forward the request.
· web.xml which is the deployment descriptor for the servlet.
Part One: Creating the Web Context Directory Structure

1. Create a directory named c:\labs\mod14lab for this lab. Under the mod14lab directory, create a subdirectory called WEB-INF (note: it must be named using upper case). Under WEB-INF, create a subdirectory called classes. Under classes create a subdirectory called lab14. The directory structure should look like the following:


[image: image1]
This directory structure is used by Java Application Servers to represent a web context.
· The mod14lab directory will contain our HTML and JSP pages. 
· WEB-INF will contain the web.xml deployment descriptor. 
· The lab14 directory will contain our classes and is where we will compile our code.

Compiling the source code for this lab requires a CLASSPATH to servlet-api.jar. This jar file contains the classes required to compile servlets. It has been supplied and is available in the c:\labs\lib directory. Use the following to compile:

javac –cp .;c:\labs\lib\servlet-api.jar *.java

Tomcat includes this jar file so we do not need to deploy it with our application.

Part Two:  Create the User Interface View
calculatorUI.html will be used to display our UI. It should look like the screen capture below:

[image: image2.png]Fle Edt View Favories Tooks Help
requestdspatcher [~ Go | O B + | 72 >

@ settings~

[ ]88~ & g~

&~

@ Intemet [ Protected Mode: Off

#100%





1. In the mod14lab directory create a file called calculatorUI.html.

2. Enter the following markup  to create the form shown above:
<html>


<head>



<title>Calculator UI</title>


</head>


<body>



<form method="get" action="servlet/CalculatorServlet">




<p><input type="text" size="10" name="first">




<select name="operator">





<option selected value="+">+</option>





<option value="-">-</option>





<option value="*">*</option>





<option value="/">/</option>




</select>




<input type="text" size="10" name="second"></p>




<input type="submit" value="Submit" name="submit">



</form>


</body>

</html>

This file is a simple HTML document that provides the components our application requires. Notice the form tag and the method and action attributes. The method indicates the type of request while the action indicates what should be requested as a result of clicking the submit button.
The action defined by this form performs a call the CalculatorServlet as referenced in the web.xml. We will go into more detail on these items later in this lab. 

Also notice the select tag. It displays a choice menu component with +, -, * and / operators as choices. The + operator is the default choice. Our calculation will be performed based on the selected operation.
3. In the mod14lab directory create a file named result.jsp.  Enter the following:

<%@ page language="java" pageEncoding="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>


<head>



<title>result.jsp</title>


</head>


<body>


Nothing here yet.

</body>

</html>

We will return to this skeleton JSP in a later step.

Part Three: Creating the CalculatorBean Model
1. We will use a Java Bean to hold our data and provide the instructions necessary to perform the requested calculation. A Java Bean is a Java class that has a specific structure. 

· It should have a no-argument constructor.

· All variable should be declared as private.

· Each variable should have a set of public methods to access and change their values in the form of getVarName() and setVarName(DataType x).
2. Create a file named CalculatorBean.java in the lab14 directory. The directory, lab14, is the package that contains our class. A class that is a member of a package must declare it prior to any statements or declarations in the class file. The first line of our class should be: 
package lab14;
Following this statement, imports and the class declaration can be coded. 

3. The bean should declare the following variables:


private String operator;


private double first;


private double second;
The operator variable will contain a String with the value of +, -, * or / depending on the selection made by the user. 
The first variable will contain the double value for the first number to be calculated. 
The second variable will contain the double value of the other number of the calculation. 
The set method for the first variable is coded as follows:


public void setFirst(String first) {



this.first = Double.parseDouble(first);


}

This method converts the String passed as an argument to a double suitable for calculation. 
Code the get method for the first variable as follows:


public double getFirst() {



return first;


}

The conversion to a String in this case is implicit so we do not have to take any extra steps to get it done.

Code the set method for the second variable in the same way. 

The operator set method only needs to assign the passed value to the operator variable.
Each variable will require a get and set method.

The result will be obtained by the getResult() method covered next..
4. Provide a method with the following signature:

public String getResult()
This method will contain the business logic necessary to perform our calculation and return the result. Once again the double will be converted to a String implicitly so we do not need to take any extra steps.
Our business logic will need to test the value of the operator variable and perform the appropriate math. This can be done using if and else if branching. Enter the code to accomplish this.
Part Four: Creating the Servlet Controller

1. Create a file called web.xml in the WEB-INF directory.

The web.xml deployment descriptor for our servlet is list below:
<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4" 


xmlns="http://java.sun.com/xml/ns/j2ee" 


xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 


xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 


http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

  <servlet>

    <servlet-name>CalculatorServlet</servlet-name>

    <servlet-class>lab14.CalculatorServlet</servlet-class>

  </servlet>

  <servlet-mapping>

    <servlet-name>CalculatorServlet</servlet-name>

    <url-pattern>/servlet/CalculatorServlet</url-pattern>

  </servlet-mapping>

  <welcome-file-list>

    <welcome-file>calculatorUI.html</welcome-file>

  </welcome-file-list>

</web-app>

2. Notice the welcome-file-list tag. It indicates the default page to be displayed.

3. In the lab14 directory create a file named CalculateServlet.java. This class is also contained in the lab14 package, so we need to add the package declaration as the first statement as we did for CalculateBean.java.

4. Using the request object’s getParameter() method obtain the values for operator, first and second passed in the URL query.

5. Create an instance of CalculateBean and set its operator, first and second values using its set methods.

6. Using the request object’s setAttribute(), save the CalculateBean instance.

7. Using the request object’s getRequestDispatcher() obtain an instance of the RequestDispatcher (use “/result.jsp” as the argument).

8. Call the RequestDispatcher object’s forward() method. This will pass the request to the result.jsp page.

9. To test our progress, we can deploy the application by coping the mod14lab directory and all its subdirectories and contents to the webapps directory of our Tomcat server.

10. Start Tomcat by executing tomcat6.exe located in the Tomcat bin directory. Notice the startup messages. If errors occur, the program will require debugging (most likely the web.xml file has problems). It is best to get the skeleton working before we add more coding and complexity. To run your application, open your browser and enter the URL: 

http://localhost:8080/mod14lab
The calculatorUI.html page should be displayed as shown in Step Two. Enter numbers in the text fields and click Submit. You should see the message coded in the skeleton result.jsp.
Part Five: Displaying Results

At this point, we should have four files:
· mod14lab/WEB-INF/classes/lab14/CalculatorBean.java: if this class is not done, complete it now. Refer to Part Three of this lab.
· mod14lab/WEB-INF/classes/lab14/CalculatorServlet.java: if this class is not done, complete it now. Refer to Part Four of this lab.
· mod14lab/calculatorUI.html: this document should be done. Refer to Part Two of this lab.
· mod14lab/result.jsp: this document will require the most work. Complete it by following the steps listed below:
1. In order to display the result of our calculation we must obtain an instance of the CalculatorBean stored in the request object. This is done be calling the request.getAttribute() method.

2. Once we have the instance, calling the bean’s getRequest() method will provide the answer. There are a few ways to get this done. The first is to use a scriptlet to get the bean and then use an expression to get the result as follows: 

<%


Lab14.CalculatorBean bean =
(lab14.CalculatorBean)request.getAttribute("calcBean"); 

%>


<%=bean.getResult() %>

3. Unfortunately, this introduces Java code directly into the JSP and violates MVC. A better way is to use the jsp:useBean tag and the jsp:getProperty tags. The syntax follows:

<jsp:useBean id="instanceName" 


scope="request"class="className" />

<jsp:getProperty name="instanceName" property="property" />

It should be remembered that the property does not refer to the variable, but to the getMethod() for that property. It follows that the getResult() method of our bean is understood to represent a variable named result. This allows us to introduce a method that contains only business logic that acts on the first and second variables to perform the calculation.
4. Complete coding result.jsp. It should provide a message that shows the calculation and the result as follows:

[image: image3.png]w & |

& - [ raesatgromw - Y )
T Y

/D DE [ > Osetngr

-

[ ]88~ & g~

The result of calculating 10 + 5 is 15.

Back

o 8 Computer| Protected Mode: Off

®100% ~





5. Use the following to create the link back to calculatorUI.html:

<a href="http://localhost:8080/mod14lab/calculatorUI.html">
Back
</a>

To test your application, stop Tomcat. Delete the mod15lab the directory under Tomcat’s webapps directory (and the C:\<Tomcat_Home>\work\Catalina\localhost\mod14lab directory to be sure the bug doesn’t surface)
6. Recopy your working mod14lab directory to webapps. 

7. Restart Tomcat.

8. Run your application and debug as necessary.

Consider how this servlet might be used to calculate 

Solutions for this lab:
The lab solutions can be found in c:\labs\mod14\solution. The listed HTML, JSP and Java classes are listed below:

/calculatorUI.html

<html>


<head>



<title>Calculator UI</title>


</head>


<body>



<form method="get" action="servlet/CalculatorServlet">




<p><input type="text" size="10" name="first">




<select name="operator">





<option selected value="+">+</option>





<option value="-">-</option>





<option value="*">*</option>





<option value="/">/</option>




</select>




<input type="text" size="10" name="second"></p>




<input type="submit" value="Submit" name="submit">



</form>


</body>

</html>

/result.jsp

<%@ page language="java" pageEncoding="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>


<head>



<title>result.jsp</title>


</head>


<body>



<h3>The result of calculating 



<jsp:useBean id="calcBean" scope="request" 



class="solution.CalculatorBean" />



<jsp:getProperty name="calcBean" property="first" />



<jsp:getProperty name="calcBean" property="operator" />



<jsp:getProperty name="calcBean" property="second" /> is



<jsp:getProperty name="calcBean" property="result" /></h3>



<p>




<a href="http://localhost:8080/mod15/calculatorUI.html">




Back



</a>



</p>




</body>

</html>

WEB-INF/classes/solution/CalculatorBean.java

package solution;

public class CalculatorBean {


private String operator;


private double first;


private double second;


public void setOperator(String operator) {



this.operator = operator;


}


public void setFirst(String first) {



this.first = Double.parseDouble(first);


}


public void setSecond(String second) {



this.second = Double.parseDouble(second);


}


public String getOperator() {



return operator;


}


public double getFirst() {



return first;


}


public double getSecond() {



return second;


}


public double getResult() {



double result = 0;



if(operator.equals("+")) result = first + second;



else if(operator.equals("-")) result = first - second;



else if(operator.equals("*")) result = first * second;



else result = first / second;



return result;


}

}

WEB-INF/classes/solution/CalculatorServlet

package solution;

import java.io.IOException;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class CalculatorServlet extends HttpServlet {


private static final long serialVersionUID = 1L;


public void doGet(HttpServletRequest request, HttpServletResponse response)




throws ServletException, IOException {



String operator = request.getParameter("operator");



String first = request.getParameter("first");



String second = request.getParameter("second");



CalculatorBean calc = new CalculatorBean();



calc.setFirst(first);



calc.setSecond(second);



calc.setOperator(operator);



request.setAttribute("calcBean", calc);



RequestDispatcher rd = request.getRequestDispatcher("/result.jsp");



rd.forward(request, response);


}

}












































































































































lab14





classes





WEB-INF





mod14lab








 Copyright ©2008, Custom Training Institute.  All rights reserved.
 Copyright ©2008, Custom Training Institute.  All rights reserved.
 Copyright ©2008, Custom Training Institute.  All rights reserved.

